ANTITUMOR AGENTS, 85. 1 CICUTOXIN, AN ANTILEUKEMIC PRINCIPLE FROM CICUTA MACULATA, AND THE CYTOTOXICITY OF THE RELATED DERIVATIVES

TAKAO KONOSHIMA and KUO-HSIUNG LEE*

Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514

Cicuta maculata L. (Umbelliferae), known as spotted water-hemlock, spotted cowbane, or wild-parsnip, is one of the stock-poisoning plants of North Carolina (1). Cases of C. maculata poisoning in humans have been reported (2.3). The roots and leaves of this plant have also been used as an herbal remedy for the treatment of scirrhous mammary cancer and scirrhous tumors, respectively (4). As a result of our continuing search among medicinal plants for novel, naturally occurring, potential antitumor agents, the methanolic extract of the whole plant of C. maculata was found to show significant in vitro cytotoxicity in the 9 KB (human nasopharyngeal carcinoma) cell culture assay (5). Bioassay-directed fractionation of the active extract led to the isolation and characterization of cicutoxin (1) as the cytotoxic $[ED_{50} (KB) = 2.0 \mu g/$ ml] and antileukemic [T/C=165% (P-388 lymphocytic leukemia in mice) at 1 3-day dosing]² principle. mg/kg, Cicutoxin was previously isolated as the poisonous principle from Cicuta virosa (the water hemlock) (6-10);³ however, its potent antileukemic activity is revealed for the first time.

Cicutoxin (1) was isolated as a yel-

lowish oil in 0.12% yield. It is very unstable on exposure to light, heat, and air. Structural characterization of 1 was based upon the fact that it has a molecular formula of C₁₇H₂₂O₂ as determined by hrms. The ir spectrum showed characteristic bands of acetylene groups at 2225 and 2135 cm⁻¹. The ¹³C-nmr spectrum revealed the presence of seventeen carbon signals, which include six olefinic (8 144.3, 139.2, 135.4, 131.6, 129.7, and 109.9) and four acetylenic (δ 85.2, 77.0, 75.1, and 65.9) carbons. This spectrum also showed the presence of four methylene (§ 39.4, 30.9, 18.6, and 16.3), one methyl (δ 13.9), one primary alcoholic (δ 61.4), and one secondary alcoholic (§ 72.3) carbons, which were determined by the method of distortionless enhancement by polarization transfer (DEPT). The formation of a diacetate (2, $C_{21}H_{26}O_4$) by acetylation of 1 with Ac₂O in pyridine and of a saturated diol (3, C₁₇H₃₆O₂) by hydrogenation of 1 with 10% Pd-C with 7 moles of hydrogen absorbed, further confirmed the presence of two alcoholic and seven unsaturated functions in 1.

The foregoing evidence coupled with the ¹H nmr (Table 1) and other data which are in accord with the structures of 1 and its related derivatives (2,4-7) led to the assignment of 1 for cicutoxin; the configuration at C-14 in 1 remains to be determined.

The unique structure plus the potent antileukemic activity of 1 prompted us to study its structure-cytotoxicity relationships. Thus, in addition to the above-mentioned diacetate 2 and saturated diol 3, new derivatives of 1 were also prepared according to literature

¹For part 84, see T. Hayashi, J. Koyama, K.H. Lee, and A.T. McPhail, *Phytochemistry*, in press.

²In vitro cytotoxicity and in vivo antileukemic assays were carried out according to standard National Cancer Institute procedures described in the literature (5). The control, 5-fluorouracil, had T/C=135% (200 mg/kg, 1-day dosing).

³Cicutoxin is a spasmodic with high toxicity to the central nervous system. It accelerates respiration causing respiratory paralysis and death (13).

methods (10-12). These include a monobenzoate (4), a methoxyethoxymethyl ether (5), a benzyloxymethyl ether (6), and a keto alcohol (7). Since all of these compounds (2-7) demonstrated ED_{50} (KB)>4.0 μ g/ml and were less cytotoxic than 1, it is concluded that the structural requirement for the potent cytotoxic antileukemic activity of 1 is due to the presence of the conjugated double and triple bonds as well as the two hydroxyl groups.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Melting points were determined on a Fischer-Johns melting point apparatus and are uncorrected. Ir spectra were measured on Perkin-Elmer 1320 ir spectrometer. ¹H- and ¹³C- nmr spectra were recorded on a Bruker 250 MHz spectrometer using TMS as an internal standard. Mass spectra were determined on a V.G. Micromass 70-70 instrument at 70 eV using a direct inlet system. Silica gel (Merck, type G 60, 70-230 mesh) was used for column chromatography, and precoated silica gel plates were used for analytical (Merck, 60 F-254, 0.25 mm) and preparative (Analtech, G. 100 m) tlc. Compounds were visualized by uv light or spraying with 15% H₂SO₄ solution followed by heating.

PLANT MATERIAL.—The whole plant of C. maculata was collected by Raymond Bowkley in Watavga County, NC in July 1985. A voucher

specimen was placed on file at Wilcox Drug Co., Boone, NC.

EXTRACTION OF *C. maculata*.—The ground, air-dried, whole plant of *C. maculata* (1.5 kg) was exhaustively extracted with MeOH. After the solvent was removed in vacuo at $<40^\circ$, a dark green syrup remained. Extraction and fractionation of the active compounds were monitored by an in vitro KB assay (5). The active syrup was suspended in H₂O-MeOH (10:1) and extracted several times with *n*-hexane. The aqueous layer was concentrated and then extracted with CHCl₃ (5 liters). The combined active CHCl₃ layers (ED₅₀ $<8.0~\mu g/ml$) were dried over anhydrous MgSO₄ and then evaporated in vacuo to give a residue (35 g).

ISOLATION OF CICUTOXIN (1).—The foregoing residue (400 mg) was separated by preparative tlc on silica gel [solvent: MeOH-CHCl₃ (7:93)] to afford seven zones. These zones were subjected to the above-mentioned cytotoxicity assay. Purification of the most active zone (ED₅₀ \simeq 3.0 µg/ml; Rf=0.4 with fluorescence produced under short uv light) by repeated preparative tlc yielded 20 mg of cicutoxin (1) as a slightly yellowish syrup: [α]D ²⁵= -11.8° (c=0.55, EtOH) lit. (9) reported [α]D ¹⁵= -14.5° (c=1.7, EtOH); ir (CHCl₃) 3620 (OH), 2225, 2135 (C =C), 1600, 999 (C $^{\pm}$ C-C $^{\pm}$ C-C $^{\pm}$ C) cm $^{-1}$; and 1 H nmr (see Table 1).

ACETYLATION OF CICUTOXIN.—Cicutoxin (10 mg) was acetylated with Ac_2O (1 ml) and pyridine (1 ml) at room temperature for 18 h. The reaction product was worked up by the usual

TABLE 1. 'H-nmr Spectral Data* of 1, 2, and 4-7.

						Protons					
Compounds	¹CH2	² CH ₂	³CH2	$=HD_8$	$=HD_6$	10CH-12CH	=HO ₆₁	14CH-	15CH ₂ -16CH ₂	17CH ₂ -	
-	3.76	181	2.48	5.60	6.71	6.40-6.10	5.81	4.19		0.93	
•		(qn-like,	t, 7.0)	(d, 14.0,	(dd, 14.0, (m)		(dd, 14.0, (q-like,	(q-like,		(t, 7.0)	
		7.0)	;	,	10.0)	01	(0./	(0./ \$	1 70-1 25	0.91	CH,CO
7	4.16	1.88	2.46	5.60	6.70 6.28 (44 15 3 (m)	-0.10	7.71 (dd 14.8.	(a-like.	(m)	(t, 7.1)	2.05
		(qn-like,	(t, 0.3)	(a, 1).2)	(dd, 19.5), 8.6)		7.1) 7.1)	7.1)	,		2.06
*		2.03	2.55	5.60	6.70	6.30-6.17	5.82	4.19		0.93	C ₆ H ₅ CO
•	(t, 6.2)	(qn-like,	(t, 6.7)	(d, 15.4)	(dd, 15.4, (m)		(dd, 14.5,	(q-like,		(t, 7.1)	8.10-/.40 (SH m)
		6.5			9.7)	,	6.7)	6.2)		0 01	()11, 111)
~		1.83	2.47	5.61	69.9	3-6.14	5.64	4.11		6.73	
١	with	(qn-like,	(t, 6.8)	(d, 15.4)	(dd, 15.4, (m)	(m)	(dd, 14.6, (q-11ke,	(q-like,		((, /.2)	
	other	(5.9)			9.4)		(0./	0.3)		1100	
	signals	1 04	2 48	2 60	89.9	6.35-6.15	5.65	4.14		0.92	$2\times C_6H_5CH_2$
0	2.00	1.04	(8 9 +)	(4 15 4)		(m)	(dd, 14.6,	(q-like,		(t, 7.3)	7.40-7.29
	(t, 0.2)	(qn-11kc,	(1, 0.0)	(i : (i)	9.4)	Ì	7.6) 6.3)	6.3)			(10H, m)
1	3 76	1.82	2.51	5.80	6.75	6.75 6.60, 6.40	6.23		2.54(t,	0.94	
`	(r. 6. 1)	(qn-like,	(t, 7.5)	6	(dd, 14.9,	(dd, each;	(d, 15.5)		7.2; H-15)	(t, 7.5)	
	(2.50 (2)	6.3)			11.0)	14.4, 11.0;			1.66 (sı-		
		15:5				H-10,			like, 7.3;		
						H-11)			(91-H		
						7.15 (dd,					
						15.5, 11.0;					
						(71-U					
				3 .	Counties	· constants (I	n Hz) are pi	ven in paren	theses. The ab	breviations s	S. 1. Complete Min Ha) are given in parentheses. The abbreviations s, d, t, qn, q, dd,

*Measured in CDCl3. The chemical shifts are given in \(\delta\) values. Coupling constants (\(f\) in Hz) are given in parenth si, and m refer to singlet, doublet, triplet, quartet, quintet, doublet of doublet, sixtet, and multiplet, respectively.

method, and further purified by preparative tlc [silica gel, MeOH-CHCl₃ (1:99)] to furnish a diacetate (**2**, 7 mg) as a colorless oil: ir (CHCl₃) 2225, 2130 (C=C), 1730 (OCOCH₃), 1600, 999 (C $^{\pm}$ C-C $^{\pm}$ C-C $^{\pm}$ C) cm $^{-1}$; 1 H nmr (see Table 1); eims m/z 342.1839 (M $^{+}$, C₂₁H₂₆O₄ requires m/z 342.1824), 282 (M $^{+}$ -HOAc), 239 (M $^{+}$ -HOAC-CH₃C=O), 227 (M $^{+}$ -CH₃CH₂CH₂-CHOAc), 193 (M $^{+}$ -C=C-C=C-CH₂CH₂-CH₂OAc), 167 (193-C₂H₂), 165 (193-C₂H₄), 152 (167-CH₃), 139 (167-C₂H₄), 141 (167-C₂H₃).

HYDROGENATION OF CICUTOXIN. —A solution of cicutoxin (1, 80 mg) in MeOH (30 ml) was hydrogenated with 10% Pd-C (30 mg) at room temperature for 20 min. The mixture was filtrated and evaporated in vacuo. The residue was purified by preparative tlc [silica gel; MeOH-CHCl₃ (5:95)] and recrystallized from petroleum ether to yield a 1,14-heptadecadiol (3, 45 mg) as colorless flakes: mp 67-69°; ir (CHCl₃) 3620 (OH) cm^{-1} ; ¹H nmr (CDCl₃) 0.93 (3H, t, $J=6.9 \text{ Hz}, {}^{17}\text{C}H_3), 3.62 (1\text{H}, \text{m}, {}^{14}\text{C}H), 3.64$ (2H, t, J=6.4 Hz, ${}^{1}CH_{2}$); eims m/z 272 (M⁺), 236, (M^+-2H_2O) , 229 $(M^+-C_3H_7)$, 211 $(M^+-$ 193 $(M^+-C_3H_7-2H_2O)$, $C_3H_7-H_2O),$ (CH₃CH₂CH₂CHOH), 55 (73-H₂O, base peak).

Compound **3** was further acetylated in the same manner as described above for the preparation of **2** to afford a diacetate (**8**) as a colorless oil: ir (CHCl₃) 1725 (OCOCH₃), 1250 (C-O-C) cm⁻¹; ¹H-nmr (CDCl₃) δ 4.87 (1H, gn, J=6.2 Hz, ¹⁴CH-OAc), 4.05 (2H, t, J=6.7 Hz, ¹CH₂OAc), 2.04, 2.05 (3H each, s, COCH₃×2), 0.90 (3H, t, J=7.2 Hz, ¹⁷CH₃).

BENZOYLATION OF CICUTOXIN. —To a mixture of 1 (30 mg) in pyridine (5 ml) was added benzoic acid anhydride (100 mg). After the mixture was stirred for 30 h at room temperature, it was poured into ice-water and extracted with Et₂O. The Et₂O layer was washed with 1% HCl, 3% aqueous NaHCO3, and H2O, dried over anhydrous MgSO4, and evaporated in vacuo at a temperature lower than 30° to yield a yellowish oil (25 mg). Purification of this oil by preparative tlc [silica gel; MeOH-CHCl3 (1:99)] afforded a monobenzoate (4, 12 mg) as a colorless oil: ir $(CHCl_3)$ 3600 (OH), 2225, 2140 $(C \equiv C)$, 1720 (R-COOR), 1275, 1120 (C-O-C), 1650, 999 (C = C - C = C - C = C) cm⁻¹; ¹H nmr (see Table 1); eims m/z 344.1778 (M+-H₂O, C₂₄H₂₄O₂ requires m/z 344.1770), 315 (M⁺-H₂O-C₂H₅), 239 (M+-H₂O-C₆H₅ C O), 210 (315-C₆H₅ C = O), 193 (315- C_6H_5COOH), 178 (193- CH_3), 165 (193- C_2H_4), 152 (178- C_2H_2), 122 $(C_6H_5\text{-COOH})$, 105 $(C_6H_5C\equiv O)$, 77 $(C_6H_5^+)$.

METHOXYETHOXYMETHYL ETHER OF

CICUTOXIN.—To a solution of 1 (100 mg) in anhydrous CH₂Cl₂ (15 ml), diisopropylethyl amine (0.5 ml) and methoxyethoxymethyl chloride (0.5 ml) were added. The reaction mixture was sealed and allowed to stand at room temperature for 15 h. The mixture was poured into ice-water and extracted with CH2Cl2. The organic layer was washed with H2O, dried over anhydrous MgSO₄, and evaporated in vacuo at a temperature below 30° to give a yellowish oil. This oil was further purified by preparative tlc [silica gel; MeOH-CHCl₃ (1:99)] to yield 5 (42 mg) as a colorless oil: ir (CHCl₃) 2230, 2140 $(C \equiv C)$, 1600, 1000 $(C \stackrel{+}{=} C - C \stackrel{+}{=} C - C \stackrel{+}{=} C)$ cm⁻¹; ¹H nmr (see Table 1); eims m/z 434.2665 (M⁺, $C_{25}H_{38}O_6$ requires m/z 434.2669), 345 (M⁺-CH₂OCH₂CH₂OCH₃), 329 (M⁺-OCH₂OCH₂-CH₂OCH₃), 328 (M⁺-HOCH₂OCH₂CH₂-OCH₃), 269 (328-CH₂CH₂OCH₃), 253 (328-OCH₂CH₂OCH₃), 239 (328-CH₂OCH₂CH₂-89 (CH₂OCH₂CH₂OCH₃), $OCH_3),$ $(CH_2CH_2OCH_3).$

BENZYLOXYMETHYL ETHER OF CICUTOXIN.—To a solution of **1** (100 mg) in anhydrous CH₂Cl₂ (50 ml), diisopropylethyl amine (0.5 ml) and benzyloxymethyl chloride (0.5 ml) were added. After the reaction mixture was stirred at room temperature for 20 h, it was worked up in an analogous manner as described above for the preparation of **5** to yield a benzyloxymethyl ether (**6**, 30 mg, oil) after purification of the product by silica gel column chromatography in MeOH-CHCl₃ (5:95): ir (CHCl₃) 2220, 2140, 1600, 1500, 1450, 1380, 1160, 1110, 1040, 999 cm⁻¹; ¹H nmr (see Table 1); eims *m/z* 498 (M⁺).

OXIDATION OF CICUTOXIN.—To a solution of 1 (30 mg) in CHCl₃ (20 ml), activated MnO₂ (200 mg) was added. After the mixture was stirred at room temperature for 5 h, it was filtered, and evaporated in vacuo at a temperature below 20° to furnish a yellowish syrup (15 mg). This syrup was crystallized from CHCl₃/n-hexane to give 14-oxocicutoxin (7, 7 mg) as yellow crystals: mp 69-71°; ir (CHCl₃) 3630, 2220, 1650, 1600, 999 cm⁻¹; ¹H nmr (see Table 1); eims m/z 256 (M⁺), 238 (M⁺-H₂O), 213 (M⁺-C₃H₇), 185 (M⁺-C₃H₇ C=O), 71 (C₃H₇C=O), 43 (C₃H₇).

ACKNOWLEDGMENTS

This investigation was supported by a grant from the National Cancer Institute (CA 17625) awarded to K.H. Lee. The authors thank Dr. Y.C. Cheng and Mr. Michael Fisher of the Cancer Research Center, Dr. David L. Harris of the Department of Chemistry and Dr. Michael T. Harvey of the School of Public Health, University of North Carolina at Chapel Hill, for biological assay, nmr, and mass spectra, respectively.

LITERATURE CITED

- J.W. Hardin, "Stock-Poisoning Plants of North Carolina," Agricultural Experiment Station, North Carolina State University, Bulletin No. 414 (Revised), Raleigh, North Carolina, 1966, p. 69.
- 2. B.E. Carlton, E. Tufts, and D.E. Girard, Clin-Toxicol., 14, 87 (1979).
- 3. G.E. Quinby, *Clin-Toxicol.*, **15**, 489 (1979).
- J.L. Hartwell, "Plants Used against Cancer," Quarterman Publication, Inc., Lawrence, MA, 1982, p. 614, and literature cited therein.
- R.I. Geran, N.H. Greenberg, M.M. Mac-Donald, A.M. Schumacher, and B.J. Abbott, Cancer Chemother. Rep., 3, 1 (1972).
- 6. "Chung Yao Ta Tzu Tien," Vol. 1, Shan-

- ghai Ko Hsueh Chi Shu Publishing Co., Ltd., Hong Kong, 1978, p. 1499.
- 7. T. Kimura, *Kagakunoryoiki*, **21**, 24 (1967).
- 8. E.F.L.J. Anet, B. Lythgoe, M.H. Silk, and S. Tripett, *J. Chem. Soc.*, 309 (1953).
- "The Merck Index", 10th ed., Merck & Co., Inc., Rahway, NJ, 1983, p. 323, and literature cited therein.
- E.J. Corey, J.L. Gras, and P. Ulrich, Tetrahedron Lett., 809 (1976).
- 11. G. Stork and M. Isobe, J. Am. Chem. Soc., **97**, 6260 (1975).
- 12. G.M. Pilling and F. Sondheimer, J. Am. Chem. Soc., 93, 1977 (1971).
- T. Owakawa and H. Tsuji, Nippon Yakurikaishi, 53, 41 (1957) and literature cited therein.

Received 5 May 1986